

Using the Dielectric Barrier Discharge Detector in an Electron Capture Mode

IFPAC ®2010 24th International Forum
Process Analytical Technology
January 31-February 4, 2010
Baltimore, Maryland U.S.A.

Jerry Clemons Ph.D., ABB Process Analytics Consultant

The ECD Detector

- Uses radioactive source emitting high energy Beta
 - Typically Ni-63 or Tritium
- Beta particles collide with detector gas generating "thermalized" electrons
- Electrons in detector set up a standing current
 - Generally high background signal
- Constituents of interest enter detector and capture electrons
 - Results in a decrease in standing current forming the basis of the chromatographic response

The ECD Detector: Advantages

- Highly sensitive to selective constituents
 - Halogenated hydrocarbons, especially multiply substituted
 - Nitro compounds, especially multiply (DNT, TNT, etc....)
 - Disulfides, diketones
- Selective
 - Take advantage of differences in sensitivity to simplify the chromatography
- Can be very stable
 - Constant temperature/flow conditions

The ECD Detector: Disadvantages

- Radioactive source:
 - Subject to licensing requirements/shipping restrictions
 - In US, subject to annual monitoring for escape
 - Long term liability (custody, disposal, etc...)
 - Very difficult to get it clean without sending it in, cannot clean in the field
 - Prevent thermal runaway: migrate Ni into foil
 - Hydrogen exchange (for tritium foils)
- Limited linear range, widely varying responses
- Needs reasonably high purity gases/no leaks
 - Oxygen and water suppress signal

DBD-ECD detector: use DBD plasma to replace radioactive source

- DBD = Dielectric Barrier Discharge plasma
 - A/C discharge across a dielectric barrier
 - Non-thermal discharge
 - Low electrode wear
 - Ability to operate without getters/purging
- Simple design
 - Non-radioactive, windowless
 - Simple, robust power supply
 - Conventional (modified) electrometer
 - Low valve disturbance, packed column compatible

Principle of Operation

- Helium mode discharge in DBD tube
- Small stream of dopant hydrogen as electron source
- Stacked electrode configuration
 - Constant bias applied to "upper" electrode
 - Collect electrons at "lower" electrode with modified FID electrometer
- Constituents of interest capture electrons, yields a negative peak in the data system

Discharge on a Detector

Side View Cross Section

ECD Schematic

DBD-ECD Advantages/Disadvantages

Advantages:

- Non-radioactive
- Highly sensitive
- Can be stable (less fussy than Helium mode -large standing current)

Disadvantages

- Widely varying sensitivity
- Requires two gas supplies (helium and very low flow hydrogen)
- Limited linearity
- Clean gases, leak free

Discharge Cycle

EC Detector Mechanism's

- Associative electron capture:
 - $AB + e(-) \le AB(-)$
 - Response decreases with temperature (subject to TED)
 - Example: Azulene (C10H8)
- Dissociative electron capture:
 - AB + e(-) > A + B(-)
 - Response for some compounds will increase with temperature, i.e. Chloroform
 - Up to a maximum, i.e. Carbon tetrachloride

Haloacetic acids in air (evidence of difference in sensitivities)

Trihalomethanes in Water

(2 ppb by headspace)

Compound ID's

- Trihalomethanes:
 - CF, chloroform; DCBM, dichlorobromomethane, DBCM, dibromochloromethane, BF, bromoform

Splitter for CS2/CCl4

Carbon Disulfide and Carbon Tetrachloride in air

(using variable dilution, 2 loop volumes)

Questions?

